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Abstract

Chain-of-thought (CoT) prompting has been
proposed as a means of improving the perfor-
mance of language models on a variety of tasks.
Eliciting such “reasoning” has been shown to
sometimes yield dramatic empirical gains on
downstream tasks for massive language models
(60B+ parameters). Recent work has shown
that CoT reasoning can be induced in smaller
language models (~1-30B parameter, which we
will refer to as “medium”-sized) via instruction
fine-tuning. However, while one can indeed
elicit reasoning sequences from such models
via the “let’s think step-by-step” incantation, it
is not clear that doing so consistently improves
downstream task performance. In this work,
we evaluate the relative performance of five
medium-sized language models on five com-
monsense question-answering datasets (which
span multiple domains). Perhaps surprisingly,
we find that CoT prompting degrades perfor-
mance by an average of 5.7% across these
models and tasks. This degradation is consis-
tent; for example, CoT is harmful for Flan-T5
(3B and 11B) across all commonsense-based
datasets considered. Indeed, for 22 out of 25
model/dataset pairs evaluated, CoT prompting
yields worse results than “direct” answering.
Our results suggest that while CoT prompting
of medium-sized LMs has shown promising re-
sults in some scenarios, one should adopt this
approach with caution, especially for common-
sense reasoning tasks. We hope that this work
fosters future research into why CoT appears
harmful in some cases, and in turn leads to ef-
forts to improve the zero-shot capabilities of
small-to-medium LMs.

1 Introduction

Chain-of-thought (CoT) prompting has been found
to be an effective technique for improving the per-
formance of large language models (LMs) by in-
ducing intermediate “reasoning”-like behavior in
outputs. Across multiple large LMs, CoT has been
shown to improve performance on multi-step tasks
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Figure 1: Differences in accuracies between CoT
prompting and direct answering for commonsense
reasoning (0 means no difference; negative values in-
dicate that CoT prompting performs worse). We report
averages (circles) and ranges (bars) across five datasets
for each of five “modestly-sized”” models. We also re-
port an overall average across models. CoT prompting
yields consistently worse performance across all models
and datasets considered.

such as commonsense question answering (QA)
and arithmetic reasoning (Kojima et al., 2022; Wei
et al., 2022c).

Most work on CoT has involved very large LMs
(>60B parameters). The ability to “reason”—or
at least to output strings indicative of doing so—
appears to emerge naturally in large LMs when they
are pre-trained over sufficiently large corpora with
self-supervised objectives (Wei et al., 2022b,c).
CoT outputs can then be elicited from such massive
models via prompts crafted to do so, for example,
by containing “let’s think step-by-step”, as shown
in Fig. 2.

Unfortunately, CoT reasoning capabilities (and
the associated potential of improved task perfor-
mance) do not seem to emerge naturally in smaller
LMs, which are far more computationally efficient
(and so, more accessible). Indeed, past research
has suggested that attempting to induce CoT rea-
soning from models containing fewer than 10B
parameters can harm their performance (Magister



Model CoT Acc. Direct Acc. | CoT Same CoT Better CoT Worse | CoT A
Flan-T5 (3B) 81.05% 85.76% 87.20% 4.03% 8.75% -4.71%
Flan-T5 (11B) 81.09% 86.21% 86.48% 4.19% 9.31% -5.12%
Tk-INSTRUCT (11B) | 52.86% 64.18% 63.90% 12.38% 23.70% -11.32%
UL2 (20B) 38.86% 41.44% 64.86% 16.27% 18.86% -2.59%
mTO (11B) 63.67% 68.33% 82.64% 6.34% 11.00% -4.66%

Table 1: How often CoT prompting affects the accuracy of different models compared with direct answering:
no effect (CoT Same), improves the accuracy (CoT Better), or harms the accuracy (CoT Worse). We also report
the difference of accuracies when using CoT instead of answering directly. We present an average over 5 datasets:

CommonsenseQA, SociallQA, PIQA, HellaSwag, and CosmosQA. The full table is provided in the Appendix.

et al., 2022; Wei et al., 2022¢). Concurrently, re-
cent work has demonstrated the potential of instruc-
tion fine-tuning (Wei et al., 2022a), which entails
fine-tuning models on a collection of supervised
corpora with tasks phrased as instructions, enables
small-to-moderate LMs to achieve performance
competitive with much larger models (Chung et al.,
2022). Moreover, this supervision paradigm ap-
pears to “unlock” zero-shot CoT capabilities in
smaller models to some extent.

However, it remains unclear whether CoT
prompting actually improves the performance of
small-to-medium LMs on downstream tasks. For
example, close inspection of results reported in ex-
isting work reveals that smaller (<11B parameters)
variants of Flan-T5, an instruction-tuned variant of
TS5 (Raffel et al., 2020), perform consistently worse
under CoT prompting rather than eliciting answers
directly (Table 5 in Chung et al. 2022).

In this work we seek to evaluate whether CoT
prompting improves the performance of instruction-
tuned small-to-medium LMs. We focus on this
model class because such models appear to provide
accessible SOTA or near SOTA performance across
many NLP tasks (at least in zero- and few-shot
settings) (Chung et al., 2022). We consider two
task types where CoT has been shown to benefit
large LMs: Commonsense QA and algebraic rea-
soning problems. Both naturally lend themselves to
step-by-step reasoning and have been used in prior
CoT work. We run examples from datasets rep-
resenting these tasks through five modestly sized
(instruction-tuned) LMs in a zero-shot setting, and
evaluate outputs produced with and without the
“let’s think step-by-step” prompt. Statistics related
to the datasets are given in Table 2.

We find that for all commonsense reasoning
tasks—i.e., all datasets other than the one related
to algebraic reasoning—-CoT prompting performs
worse than direct answering (by an average of 5.7
points in absolute performance). Moreover, manual

error analysis demonstrates that one of the main
bottleneck of using CoT prompting is producing
correct reasoning steps (rationales). Our results
suggest that while CoT prompting of modestly-
sized LMs has shown promising results in some
scenarios, one should adopt this approach with cau-
tion, especially for commonsense reasoning tasks.
We hope that this work motivates research into why
CoT appears harmful in some cases, and in turn
leads to efforts to improve the zero-shot capabilities
of small-to-medium LMs.

2 Related work

Instruction and multi-task fine-tuned models.
Providing language instructions to models has
proven helpful for NLP tasks. Specifically, recent
work has proposed training LMs on datasets com-
prising a multitude of supervised tasks with asso-
ciated instructions to enable models to generalize
better when provided instructions for unseen tasks.

Muennighoff et al. (2022) fine-tuned mT5 on
xP3, a collection of 46 datasets encompassing var-
ious tasks and languages. Wang et al. (2022b)
trained Tk-INSTRUCT, a model based on T5 (Raf-
fel et al., 2020) and fine-tuned on a meta dataset
encompassing more than 1,600 tasks with a hand-
ful of positive and negative samples each. Chung
et al. (2022) released versions of T5 and PalLM fine-
tuned on instruction versions of more than 1,800
tasks, including 9 tasks with rationales, resulting in
significantly improved generalization capabilities
over the original models, while Iyer et al. (2022)
fine-tuned the 30 and 175 billion parameter ver-
sions of OPT on 2,000 tasks by providing specific
instructions and, in some cases, chains of reason-
ing. In the aforementioned work, scaling up to
thousands of tasks proved critical in improving
the generalization capabilities of such models and
contributed to unlocking the capability to do CoT
prompting.



Example A

Example B

CoT Prompting Direct Answering

Question: cats have how many apendages?
A tail

(B)  whiskers

(C) twoeyes

(D) four paws

(E) fourlegs

Question: cats have how many
apendages?

A tail

(B)  whiskers

(C) twoeyes

(D) four paws

(E) fourlegs

Answer: Let's think step by step. Cats four apendages: two
eyes, four paws, and a tail. So, the answer is C. Therefore,
among (A), (B), (C), (D), and (E) the best answer is: (C).

Answer: Among (A), (B), (C), (D),
and (E) the best answer is: (E).

Question: The men talked at length and found they were agreeing with a
Iot of things, how would they describe their feeling toward one another?

Answer: Let's think step by step. E is the
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things, how
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CoT Prompting Direct Answering

Question: The men talked at length
and found they were agreeing with a
lot of things, how would they describe
their feeling toward one another?

(A)  problem

(B) peace

(€) love

(D) contract
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Answer: Among (A), (B), (C), (D), and

(E) the best answer is: (E).
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Figure 2: Examples of CoT prompting and direct answering on the CommonsenseQA dataset. The text in light
blue was generated by the Flan-T5 11B model. We include an open parenthesis in our prompt to make it more likely
for the model to output one of the valid options, thus simplifying the answer parsing.

Chain-of-thought prompting in small and
medium-sized language models. As self-
supervised, generative pre-training is not enough
to unlock CoT prompting capabilities in smaller
models, several strategies have been proposed to
address this need. Chung et al. (2022) showed that
even models with less than a billion parameters
were capable of zero-shot CoT prompting by first
carrying out instruction fine-tuning on a huge col-
lection of datasets with instructions and then on a
smaller set of datasets which had rationales about
the correct answers. Tay et al. (2022) achieved a
similar goal in a 20 billion parameter model by pre-
training from scratch on data combining multiple
tasks under three denoising objectives with varying
corruption rates, whereas work by Magister et al.
(2022); Ho et al. (2022); Li et al. (2022) showed
that curated reasoning chains output by large LMs
can be used to "teach" smaller models (with as few
as 300 million parameters) to do CoT reasoning
through teacher forcing pipelines.

3 Experimental Setup

3.1 Types of Prompts

Direct answering. Given a model and a test in-
stance, we prompt the model to provide an answer
directly. In this prompt style, we set up a template
for each dataset with the question or context fol-
lowed by two to five lettered options (depending on
the dataset). We then prompt the model to output
only the letter corresponding to the best option.

Chain-of-Thought (CoT) prompting. For this
setup we prompt the model with the question or
context followed by the options. Then, we add a
new line with the standard “let’s think step-by-step”
instruction. We then allow the model to generate
<128 tokens, and append the output of this to the
initial input and feed the result back to the model
along with a prompt asking it to output the letter

corresponding to the best answer.

3.2 Evaluations

To measure the impact of CoT prompting, we first
compute the overall accuracy with and without CoT
prompting, respectively, for all models and datasets
evaluated. For each setup, we gather the samples
for which the given model produces a correct an-
swer and those for which it produces an incorrect
answer. Given these, we calculate the proportion of
samples on which the CoT improves the accuracy,
harms the accuracy, or has no effect. Importantly,
this enables us not to calculate the difference in per-
formance when switching from direct answering to
CoT prompting.

3.3 Models

We run experiments using the following models.

Flan-T5. We use the 3B and 11B versions of
Flan-T5 (Chung et al., 2022), which is a family
of instruction-tuned T5 models with the encoder-
decoder architecture (Raffel et al., 2020) on a mix-
ture of 146 distinct categories of tasks, including 9
datasets with rationales supporting answers.

Tk-INSTRUCT. Similar to Flan-T5, Tk-
INSTRUCT is a family of models (Wang et al.,
2022a) fine-tuned on top of TS5, on a mixture of
over 1,600 tasks. We use only the 11B version of
these models.

UL2. We use the 20B-parameter variant of UL2,
which is pre-trained under a denoising task. It is
trained to recover the missing words in a given
incomplete input under three settings, with varying
degrees of noise (Tay et al., 2022).

mTO0. This is a family of models based on TO
(Sanh et al., 2022). Its generalization capability
is greatly increased by fine-tuning over a wider



Dataset Domain # Options  Split # Examples CoT A
CommonsenseQA  general commonsense 5 test 2194 -5.634%
SociallIQA social commonsense 3 val 1954 -3.612%
PIQA physical commonsense 2 val 1838 -10.632%
HellaSwag sentence completion 4 val 10042 -5.424%
Cosmos QA contextual commonsense 4 val 2985 -3.108%
AQuA algebraic word problems 5 test 254 0.078%

Table 2: Statistics of all the datasets used in this work and the average differences of accuracies with and
without using CoT prompting, averaged across all 5 models.

variety of tasks. We use only the 11B-parameter
version in this work (Muennighoff et al., 2022).

4 Results

The implementation details for all our experiments
are available in Appendix A. The datasets on which
we carried out the experiments are described in
Table 2 and Appendix B.

Commonsense QA. We provide a summary of
results for all models considered on five common-
sense reasoning tasks in Table 1 and Figure 1 (full
results in the Appendix). Using CoT prompting
consistently harms model performance on the com-
monsense QA datasets considered. More precisely,
CoT prompting degrades model performance by
anywhere from 2.6 to 11.3 points (average 5.68).
This result is somewhat counterintuitive given that
such tasks seem to require multiple steps of reason-
ing, and chains of thought are supposed to help the
model produce intermediate rationales. Indeed, our
findings suggest that even when CoT capabilities
are “unlocked” in smaller LMs, it may be inadvis-
able to elicit such “reasoning”.

Algebraic reasoning. However, on algebraic
word problems, we observe that CoT prompting
provides a significant boost to the Flan-T5 models,
as can be seen in Table 3. This is a sharp contrast
to the commonsense QA case, and suggests that
CoT prompting of modestly sized models may be
beneficial for certain types of tasks, but perhaps
not others. This result is consistent with findings of
earlier work that has shown models to achieve sig-
nificant performance gains in algebraic tasks from
zero-shot CoT prompting (Kojima et al., 2022).

Manual error analysis. To attempt to charac-
terize why CoT prompting harms performance
on commonsense reasoning datasets, we sampled
98 random examples from the CommonsenseQA
dataset and fed them to Flan-T5 (11B) on them
using CoT prompting. We manually labelled each

example regarding whether the correct answer was
given and whether a correct reasoning chain was
given. We find that 20.4% of the actual questions
were badly written or contained errors, such as
having two or more correct (and sometimes even
repeated) choices. Excluding these, 50% of genera-
tions included accurate answers and logical accom-
panying rationales. 10.2% of outputs contained
incorrect answers and incorrect rationales; 11.2%
contained a correct answer but an incorrect ratio-
nale; and 3.1% produced an incorrect answer de-
spite producing a correct rationale. Finally, in 5.1%
of the examples the model produced a correct an-
swer after generating a rationale that only repeated
the given question.

Interestingly, Flan-T5 managed to override its
own rationales in a significant number of cases
where it was not helpful at all to produce one
(16.3%), and there were relatively few instances
where an incorrect answer was generated after pro-
ducing a sound rationale. Nevertheless, there was
a significant number of instances where the model
generated incorrect rationales leading to incorrect
answers. Figure 2 includes one example of Flan-T5
generating reasoning that merely repeats informa-
tion from the prompt and another where incorrect
reasoning causes the model to select the wrong
option.

5 Conclusions

In this work, we empirically evaluated the perfor-
mance of instruction-tuned small-to-medium sized
LMs for commonsense QA tasks with CoT prompt-
ing in comparison with direct answering. We found
that, perhaps surprisingly, CoT prompting yields
substantially worse performance on commonsense
QA tasks across five model variants. Our analysis
also provides insight on the failure cases when us-
ing CoT prompting for such models. Ultimately,
we hope this motivates research into why CoT often
harms performance for such models, and ultimately
into methods to address this issue.



Limitations

In this work, we considered five medium-sized
instruction-tuned LMs, and evaluated their perfor-
mance across six datasets in all. We only investi-
gated the zero-shot setting following the intriguing
success of models like Flan-T5 and UL2 in unlock-
ing the zero-shot CoT capabilities; it is possible that
CoT could yield benefits for smaller models when
they are fine-tuned on the commonsense datasets,
which we leave as the future work.

We also note that all results here are on English
corpora, and our findings may not generalize to
other languages.

Ethics Statement

Our work is centered on studying the impact of us-
ing CoT prompting with medium-sized instruction-
tuned LMs for commonsense reasoning tasks. By
studying this, we highlight that NLP practicioners
should be careful when using such approaches,
which might mitigate the risks associated with the
behaviors we describe in our findings.
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Appendix

A Implementation details of LM
prompting

We use the Hugging Face Transformers (v. 4.20.0)
implementations of all models considered (Wolf
et al., 2020). We set up the prompt templates for
all datasets using the PromptSource library (Bach
et al., 2022). For simplicity and computational
efficiency—and in keeping with prior work (Li
etal., 2022; Wei et al., 2022c)—we use only greedy
decoding. For direct answering, we generate a max-
imum of 5 tokens, whereas for CoT we allow the
model to generate up to 128 tokens (to accommo-
date “reasoning” strings).

All experiments were carried out on a computer
with two NVIDIA A100 40GB GPUs. Running
the experiments reported in Table 3 took around 10
hours.
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B Datasets

We evaluate the relative performance of direct an-
swering vs CoT prompting on five datasets encom-
passing several domains of commonsense reason-
ing, as well as a single dataset requiring algebraic
thinking. Table 2 summarizes the sizes and do-
mains of each dataset as well as the partitions we
used for our experiments.

CommonsenseQA CommonsenseQA is a gen-
eral question-answering dataset in which 12,247
questions are paired with five candidate options.
The dataset aims to ask questions that require back-
ground knowledge that is trivial to humans but is
not easy to gather directly on the web. The ques-
tions and answers are not authored in relation to a
specific text; rather, they are generated freely by
workers (Talmor et al., 2019).

SocialIQA A question-answering dataset of
38,000 questions focused on testing the capabil-
ity of language models to reason about the social
implications of people’s actions (Sap et al., 2019).
For each question, a context describing a social
situation is provided, and the model is required to
select the most likely answer from three candidate
options.

PIQA Inspired by instructables.com, PIQA
is a dataset that measures the physical common-
sense knowledge of language models (Bisk et al.,
2020). Given a natural language goal or objective
and two possible solutions, the model must choose
the most appropriate solution, of which exactly one
is correct.

HellaSwag Contains 70k examples of questions
in which the model must choose the most logi-
cal sentence from four given options to continue a
given scene or situation. The task relies on general
commonsense knowledge and is generally trivial
for humans (Zellers et al., 2019).

Cosmos QA Comprises 35,600 reading-
comprehension problems that require common-
sense reasoning. Four candidate options are given
for each problem, and the correct answer is never
mentioned explicitly in the accompanying text.
Therefore, the model must rather read between
the lines and employ "contextual commonsense
reasoning" to arrive at the most appropriate
conclusion (Huang et al., 2019).

AQuA A dataset consiting of 100,000 algebraic
word problems. Each problem is accompanied by
five candidate options, only one of which is correct
(Ling et al., 2017). This is not a commonsense-
based dataset. Rather, we use it to compare our
findings in regards to commonsense QA datasets to
other domains in which CoT prompting has been
shown more consistently to provide a significant
and substantial advantage, even in smaller models.



C Full results

Model Dataset CoT Acc. Direct Acc. | CoT Same CoT Better CoT Worse | CoT A
Flan-T5 (3B) ECQA 83.95% 95.34% 85.77% 1.41% 12.80% -11.39%
Flan-T5 (11B) ECQA 86.13% 91.97% 89.14% 2.50% 8.34% -5.84%
Tk-INSTRUCT (11B) ECQA 55.01% 63.12% 68.16% 11.85% 19.96% -8.11%
UL2 (20B) ECQA 37.41% 39.15% 67.72% 15.26% 17.00% -1.74%
mTO (11B) ECQA 71.31% 72.40% 90.86% 4.01% 5.10% -1.09%
Flan-T5 (3B) SociallQA 73.94% 78.65% 85.15% 5.06% 9.77% -4.71%
Flan-T5 (11B) SociallQA 78.14% 82.39% 87.35% 4.19% 8.44% -4.25%
Tk-INSTRUCT (11B)  SociallQA 49.02% 60.79% 60.99% 13.61% 25.38% -11.77%
UL2 (20B) SociallQA 41.65% 39.24% 66.37% 18.01% 15.60% 2.41%
mTO (11B) SociallQA 73.37% 73.11% 90.83% 4.70% 4.44% 0.26%
Flan-T5 (3B) PIQA 79.97% 84.05% 83.72% 6.09% 10.17% -4.08%
Flan-T5 (11B) PIQA 77.20% 84.70% 82.58% 4.95% 12.45% -7.50%
Tk-INSTRUCT (11B)  PIQA 61.09% 75.40% 57.93% 13.87% 28.18% -14.31%
UL2 (20B) PIQA 56.03% 64.09% 58.65% 16.64% 24.70% -8.06%
mTO (11B) PIQA 55.54% 74.75% 65.12% 7.83% 27.04% -19.21%
Flan-T5 (3B) HellaSwag | 83.69% 87.02% 87.61% 4.52% 7.85% -3.33%
Flan-T5 (11B) HellaSwag | 80.33% 85.38% 82.09% 6.42% 11.47% -5.05%
Tk-INSTRUCT (11B)  HellaSwag | 45.57% 54.58% 64.99% 12.99% 22.00% -9.01%
UL2 (20B) HellaSwag | 23.96% 29.37% 64.93% 14.82% 20.23% -5.41%
mTO (11B) HellaSwag | 33.16% 37.48% 71.34% 12.16% 16.48% -4.32%
Flan-T5 (3B) CosmosQA | 83.68% 83.74% 93.76% 3.08% 3.14% -0.06%
Flan-T5 (11B) CosmosQA | 83.65% 86.63% 91.25% 2.88% 5.86% -2.98%
Tk-INSTRUCT (11B)  CosmosQA | 53.60% 67.00% 67.43% 9.58% 22.98% -13.40%
UL2 (20B) CosmosQA | 35.23% 35.37% 66.62% 16.61% 16.75% -0.14%
mTO (11B) CosmosQA | 84.95% 83.91% 95.06% 2.98% 1.94% 1.04%
Flan-T5 (3B) AQuA 25.97% 23.21% 69.67% 16.53% 13.77% 2.76%
Flan-T5 (11B) AQuA 25.97% 24.01% 68.10% 16.92% 14.96% 1.96%
Tk-INSTRUCT (11B)  AQuA 25.18% 25.18% 66.13% 16.92% 16.92% 0.00%
UL2 (20B) AQuA 21.64% 24.79% 74.79% 11.02% 14.17% -3.15%
mTO (11B) AQuA 16.52% 17.70% 93.29% 2.75% 3.93% -1.18%

Table 3: Full results for all models and datasets.



